Tetrahedron Letters No. 42, pp 3769 - 3772, 1977. Pergadon Press. Printed in Great Britain.

THE NATURE OF ARYL <sup>19</sup>F NMR POLAR FIELD EFFECTS: EVIDENCE FOR REVERSED POLAR FIELD EFFECTS

William Adcock\* and Thong-Chak Khor (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5043 Australia).

(Received in UK 8 August 1977; accepted for publication 2 September 1977)

Recent studies by us,<sup>1,2,3</sup> and others,<sup>4,5</sup> have demonstrated the beneficial aspects of the phenylbicyco[2.2.2]octyl skeletal framework for assessing polar field effect phenomena in isolation of other electronic mechanisms. Herein we report further on these systems with new <sup>19</sup>F nmr data for the previously reported<sup>1</sup>1-X-4-(p-fluoropheny1)bicyclo[2.2.2]octanes (1) in an inert non-polar solvent (cyclohexane) together with similar data for a new model system (2; 1-X-4-(m-fluoropheny1)bicyclo[2.2.2]octanes) which, in conjunction with the aryl <sup>13</sup>C nmr



data for 1-X-4-phenylbicyclo[2.2.2]octanes (3) in cyclohexane-d<sub>12</sub>, allow a definitive assessment of <sup>19</sup>F nmr polar field effects in these systems. In addition, we also report <sup>19</sup>F nmr data for another new model system (4; 1-X-4-(o-fluorophenyl)bicyclo[2.2.2]octanes) which we have examined since a consideration of orientational factors suggested that reversed <sup>19</sup>F nmr polar field effects should be observed here, a phenomenon previously sought<sup>6</sup> after in other model aryl fluorides but to no avail. The substituent chemical shift (SCS) data listed in Table 1 have been related to substituent parameters ( $\sigma_{\rm I}$  and  $\sigma_{\rm R}^{\rm o}$ )<sup>7</sup> utilizing Taft's dual substituent parameter equation<sup>7</sup> (Table II). It can be seen that, except for C-2 in 3, the precision of fit for the correlations are excellent. The  $\rho_{\rm R}$  values are not statistically significant.

| Table                                                                                                                        | el: Substitu                                    | ent Chemi             | ical Shifts       | (SCS) <sup>a</sup> f | or Systems                         | 1, 2, 3                                      | , and 4.          |                   |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------------|----------------------|------------------------------------|----------------------------------------------|-------------------|-------------------|
| Subst                                                                                                                        | ituent (X)                                      | <sup>19</sup> F SCS — |                   | $\neg$               |                                    | <sup>13</sup> C Se                           |                   | $\overline{}$     |
|                                                                                                                              |                                                 | 1                     | 2                 | 4                    | •                                  | 3                                            |                   |                   |
|                                                                                                                              |                                                 |                       |                   |                      | C-1                                | C-2                                          | C-3               | C-4               |
|                                                                                                                              | CH <sub>4</sub>                                 |                       |                   |                      | -0.47                              | 0.00                                         | -0.02             | 0.00              |
|                                                                                                                              | F                                               | 1.00                  | 0.58              | -0.58                | Ъ                                  | -0.19                                        | 0.25              | 0.54              |
|                                                                                                                              | C1                                              | 1.09                  | 0.62              | -0.57                | -2.27                              | -0.25                                        | 0.22              | 0.54              |
|                                                                                                                              | Br                                              | 1.17                  | 0.65              | -0.56                | -2.16                              | -0.27                                        | 0.25              | 0.57              |
|                                                                                                                              | I                                               | 1.17                  |                   | -0.53                |                                    |                                              |                   |                   |
|                                                                                                                              | OCH <sub>z</sub>                                | 0.51                  | 0.26              | -0.47                | -1.37                              | -0.08                                        | 0.11              | 0.24              |
|                                                                                                                              | OCOCH <sub>z</sub>                              | 0.75                  | 0.51              | -0.54                |                                    |                                              |                   |                   |
|                                                                                                                              | NH <sub>2</sub>                                 | 0.37                  | 0.18              | -0.36                | -0.99                              | 0.03                                         | 0.06              | 0.13              |
|                                                                                                                              | NO <sub>2</sub>                                 | 1.76                  | 0.97              | -0.61                | -3.06                              | -0.22                                        | 0.44              | 0.90              |
|                                                                                                                              | CN                                              | 1.49                  | 0.90              |                      | b                                  | -0.25                                        | 0.44              | 0.84              |
|                                                                                                                              | NH <sub>4</sub> <sup>+</sup>                    | 2.18 <sup>C</sup>     | 1.04 <sup>C</sup> | -1.08 <sup>c</sup>   | -3.84 <sup>°</sup>                 | -0.88 <sup>c</sup>                           | 0.26 <sup>c</sup> | 1.02 <sup>c</sup> |
|                                                                                                                              | NH, +C1-                                        |                       |                   |                      | -2.97 <sup>d</sup>                 | -0.15 <sup>d</sup>                           | 0.34 <sup>d</sup> | 0.76 <sup>d</sup> |
| a.                                                                                                                           | Chemical shift                                  | :s (ppm) :            | referenced        | to parent            | compound                           | (X = H;                                      | ± 0.03 ppm)       | in cyclohexane;   |
|                                                                                                                              | a positive sig                                  | n denote              | s deshieldi       | ng.                  |                                    |                                              |                   |                   |
| ь.                                                                                                                           | Not observed due to low solubility of compound. |                       |                   |                      |                                    |                                              |                   |                   |
| c.                                                                                                                           | Solvent, CF <sub>z</sub> CO <sub>2</sub> H.     |                       |                   |                      |                                    |                                              |                   |                   |
| d.                                                                                                                           | Solvent, CH <sub>7</sub> OH.                    |                       |                   |                      |                                    |                                              |                   |                   |
|                                                                                                                              | 3                                               |                       |                   |                      |                                    |                                              |                   |                   |
|                                                                                                                              |                                                 |                       |                   |                      |                                    |                                              |                   |                   |
| Table II: Best Fit Parameters for DSP Correlative Analyses <sup>a</sup> of <sup>19</sup> F and <sup>13</sup> C SCS listed in |                                                 |                       |                   |                      |                                    |                                              |                   |                   |
| Table I.                                                                                                                     |                                                 |                       |                   |                      |                                    |                                              |                   |                   |
|                                                                                                                              | System                                          |                       | ρ                 |                      | ρ                                  |                                              | sd <sup>b</sup>   | f <sup>c</sup>    |
|                                                                                                                              | 1 <sup>d</sup>                                  |                       | 2.52              |                      | 0.29                               |                                              | 0.12              | 0.11              |
|                                                                                                                              | 2 <sup>d</sup>                                  |                       | 1.49              |                      | 0.22                               |                                              | 0.07              | 0.11              |
|                                                                                                                              | 4 <sup>d</sup>                                  |                       | -1.04             |                      | 0.43                               |                                              | 0.04              | 0.08              |
|                                                                                                                              | 3; C-1 <sup>e</sup>                             |                       | -4.73             |                      | 0.52                               |                                              | 0.10              | 0.05              |
|                                                                                                                              | 3: C-2 <sup>e</sup>                             |                       | -0.44             |                      | -0.05                              |                                              | 0.05              | 0.26              |
|                                                                                                                              | 3; C-3 <sup>e</sup>                             |                       | 0.65              |                      | 0.15                               |                                              | 0.04              | 0.12              |
|                                                                                                                              | 3; C-4 <sup>e</sup>                             |                       | 1.34              |                      | 0.23                               |                                              | 0.04              | 0.07              |
| a.                                                                                                                           | The appropria                                   | te form o             | f the equat       | ion is, S            | CS = p <sub>I</sub> o <sub>I</sub> | + p <sub>R</sub> σ <sub>R</sub> <sup>0</sup> |                   |                   |

- The standard deviation of the fit. ь.
- The fit parameter,  $f \equiv SD/RMS$ , where RMS is the root mean square of the data points. c. Correlation of excellent precision are those for which f << 0.1.
- d.
- $NH_3^+$  excluded from analysis.  $NH_3^+$  and  $NH_3^+C1^-$  excluded from analysis. e.

Although the difference of opinion<sup>8,9</sup> concerning the nature of aryl <sup>19</sup>F nmr polar field effects has now been largely reconciled, 4,10,11 the quantitative evaluation of the relative magnitude of the components (direct field  $(F_n)$  and field-induced  $\pi$  polarization  $(F_{\pi})$ )<sup>12</sup> determining this phenomenon is still a subject for deliberation.<sup>4,11</sup> The relative magnitude of  $F_{m}$ effects within model aromatic systems can be conveniently monitored utilizing <sup>13</sup>C SCS as a charge density probe. 10,11,13,14 The main assumption underlying this technique is that aryl <sup>13</sup>C SCS, properly chosen, are dominated by  $\pi$  electron density perturbations.<sup>15</sup> However. it must be borne in mind that this assumption may not be valid for those carbon centres where  $\pi$  electron density changes are small and the longitudinal polarizabilities of the associated CH bonds are significant and different. A consideration of orientational factors<sup>16</sup> (cos  $\theta/r^3$ ;  $\theta$ is the angle between a line of length r drawn between the midpoints of the CH (or CF) and CX bonds) indicates that the latter effect should be identical for carbons centers 3 and 4 in system Hence  $F_{\pi}$  (C-3)/ $F_{\pi}$  (C-4) for 3<sup>17</sup> equals  $\rho_{I}$  (C-3)/ $\rho_{I}$  (C-4) = 0.65/1.34 (Table II) i.e. 3.  $F_{\pi}$  (System 2)/ $F_{\pi}$  (System 1) = 0.5.

The direct field contribution  $(F_D)$  to 1 and 2 can now be estimated in the following way for an arbitrary substituent  $(\sigma_I = 1)$ : If the polar field effect in I is equated to  $F_D + F_{\pi}$ , then the effect in 2 is equal to  $F_D + 0.5 F_{\pi}$  since orientational factors (vide supra) in 1 and 2 are identical. Therefore,  $(F_D + F_{\pi})/(F_D + 0.5F_{\pi}) = \rho_I$  (System 1)/ $\rho_I$  (System 2) = 2.52/1.49 (Table II). Hence  $F_D = 0.25 F_{\pi}$ . Therefore, the direct field contribution to 1 and 2 is 20% and 33% respectively. The former determination is in remarkably good agreement with a recent estimate (25%) for I by an entirely different approach.<sup>4</sup> Utilizing the SCS data for NO<sub>2</sub> and CN in I (Table I) and the above determination, we have evaluated A in the Buckingham equation<sup>18</sup> (SCS = AE<sub>Z</sub> where E<sub>Z</sub> is the direct field component along the CF bond) for linear electric field effects. Standard bond lengths and bond angles<sup>19</sup> were assumed while  $\sigma$  bond moments<sup>20</sup> for NO<sub>2</sub> and CN were employed. The values are 59 x 10<sup>-12</sup> and 46 x 10<sup>-12</sup> respectively.

Finally, it can be seen (Table I and II) that, as expected, reversed <sup>19</sup>F nmr polar field effects are realized in system 4. Using the A value derived from the NO<sub>2</sub> data in 1 (vide supra), the Buckingham equation can be used to estimate the direct field ( $F_D$ ) contribution for NO<sub>2</sub> in 4. The value (-0.20 ppm) indicates that the  $F_D$  contribution here is approx., 33%. It is important to note that the similarity between the pattern of  $\rho_I$  values (<sup>19</sup>F SCS) for 1, 2 and 4 and the corresponding  $\rho_I$  values (<sup>13</sup>C SCS) for the appropriate carbon centers in 3 (Table II) clearly exemplifies the dominance of field-induced  $\pi$  polarization over direct field effects in determining <sup>19</sup>F SCS in 1, 2, and 4. This result is corroborated similarly by the <sup>19</sup>F and <sup>13</sup>C SCS for the positive pole, NH<sub>3</sub><sup>+</sup> (Table I).

## References and Notes

- 1. W. Adcock and T.C. Khor, Tetrahedron Lett., 3063 (1976).
- 2. W. Adcock and T.C. Khor, J.Org.Chem., 42, 218 (1977).
- 3. W. Kitching, W. Adcock, T.C. Khor, and D. Doddrell, <u>J.Org.Chem.</u>, <u>41</u>, 2055 (1976).
- 4. W.F. Reynolds, <u>Tetrahedron Lett.</u>, 675 (1977).
- 5. D.F. Ewing, S. Sotheeswaran, and K.J. Toyne, Tetrahedron Lett., 2041 (1977).
- 6. R.D. Topsom, Prog. Phys. Org. Chem., 12, 1 (1976) and references therein.

- 7. S. Ehrenson, R.T.C. Brownlee, and R.W. Taft, <u>Prog.Phys.Org.Chem.</u>, <u>10</u>, 1 (1973) and references therein.
- 8. J. Fukunaga and R.W. Taft, J.Am.Chem.Soc., 97, 1612 (1975) and references therein.
- 9. W. Adcock and B.D. Gupta, <u>J.Am.Chem.Soc.</u>, <u>97</u>, 6871 (1975); W. Adcock, B.D. Gupta, and T.C. Khor, Aust.J.Chem., 29, 2571 (1976) and references therein.
- 10. W.F. Reynolds and G.K. Hamer, J.Am.Chem.Soc., 98, 7296 (1976) and references therein.
- W. Kitching, M. Bullpitt, D. Gartshore, W. Adcock, T.C. Khor, D. Doddrell, and I.D. Rae, J.Org.Chem., 42, 2411 (1977) and references therein.
- 12.  $F_D$  is determined by through-space polarization of the CF bond, while  $F_{\pi}$  is determined by polarization of the entire conjugated system which may lead to a change in the  $\pi$  charge density at the carbon to which fluorine is attached with a concomitant response from fluorine.
- 13. W. Adcock, B.D. Gupta, and W. Kitching, J.Org.Chem., 41, 1498 (1976).
- 14. R.T.C. Brownlee, G. Butt, C.H. Chan, and R.D. Topsom, J.C.S., Perkin 11, 1486 (1976).
- 15. W.J. Hehre, R.W. Taft, and R.D. Topsom, Prog. Phys. Org. Chem., <u>12</u>, 159 (1976) and references therein.
- 16. J.G. Batchelor, J.Am.Chem.Soc., 97, 3410 (1975) and references therein.
- 17. The field-induced charge density perturbations in 3, as reflected by the  $\rho_{\rm I}$  values and the  $^{13}$ C SCS for NH<sub>3</sub><sup>+</sup> or NH<sub>3</sub><sup>+</sup>Cl<sup>-</sup>(Tables), are schematically illustrated on structure 3. The pattern is identical with that recently reported.<sup>5</sup> It should be noted that we have been aware of this result for some time (see ref. 3), however, we have delayed publication until the completion of our studies of 2 and 4. The relative  $\rho_{\rm I}$  values for C-4 and C-1 in 3 are in approximate accord with expectations based on <sup>13</sup>C electric field shift co-efficients (A<sub>2</sub>)<sup>16</sup> for tertiary (1.6 x 10<sup>-11</sup>) and quaternary (3.6 x 10<sup>-11</sup>) aromatic carbons as well as distances.
- 18. A.D. Buckingham, Can.J.Chem., 38, 300 (1960).
- 19. R.T.C. Brownlee and R.W. Taft, J.Am.Chem.Soc., 92, 7007 (1970) and references therein.
- 20. C.W.N. Cumper, Tetrahedron, 25, 3131 (1969).